Functional Compatibility, Markov Chains, and Gibbs Sampling with Improper Posteriors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Sampling with Markov Chains

Random sampling has found numerous applications in computer science, statistics, and physics. The most widely applicable method of random sampling is to use a Markov chain whose steady state distribution is the probability distribution r from which we wish to sample. After the Markov chain has been run for long enough, its state is approximately distributed according to 7r. The principal proble...

متن کامل

Markov Chain Monte Carlo and Gibbs Sampling

A major limitation towards more widespread implementation of Bayesian approaches is that obtaining the posterior distribution often requires the integration of high-dimensional functions. This can be computationally very difficult, but several approaches short of direct integration have been proposed (reviewed by Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov Chain Mon...

متن کامل

Markov Chain Monte Carlo and Gibbs Sampling

A major limitation towards more widespread implementation of Bayesian approaches is that obtaining the posterior distribution often requires the integration of high-dimensional functions. This can be computationally very difficult, but several approaches short of direct integration have been proposed (reviewed by Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov Chain Mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 1998

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.1998.10474760